Autonomous Robots
Bug 2 algorithm with the e-puck mobile robot

Al Arafat,Abdullah Abdulaziz,Micheale Hadera
April 2015
MSc in VIBOT 2014/15

1. INTRODUCTION

Obstacle following is one of the most basic prob-
lems in robot controlling and it constitutes an impor-
tant step in higher level autonomous motion planning.
It consists in obtaining information from the sensors
and, based on that acquired knowledge, move the robot
in the environment in such a way that it can avoid ob-
stacle collision. This problem can be solved using the
behavioral approach, which generates a specific motor
response from a given perceptual stimulus.[1]

Bug 2 constitutes one of the Bug algorithms for
path planning, and despite its simplicity, but effective-
ness, it can guarantee that the goal position will always
be found. In this algorithm, the robot heads towards the
goal along the line that goes from the initial position to
the goal, called m-line. When it senses an obstacle on
its way, it follows the obstacle until it meets the m-line
again.

The objective of this lab work is to implement the
Bug 2 algorithm to go to the goal without crashing with
obstacles. The algorithm exhibits two behaviors: head
toward goal behavior and obstacle following. In this
lab work, we combined the obstacle following behav-
ior of the robot with its head toward goal behavior.And
the report is organized in following manners. In the next
section, the Bug algorithm is described briefly. Depend-
ing on the algorithm all the robot behavior is divided in
to some states. Those states are over viewed and ex-
plained in details in the algorithm and implementation
section.Some conclusive remarks on the laboratory as-
signment, e-puck robot and bug?2 algorithm are mention
in the Conclusion.

2. Bug Algorithm

The Bug algorithms are a path finding algorithms,
which simplifies a bug movement into some simpler al-
gorithms, to be adaptable for sensor based robots.

 The first algorithm is Bug 0 algorithm. Here the
robot starts moving towards the goal until obstacle
is detected, once obstacle is found, it follow the ob-
stacle wall until it can head toward the goal again
(Figure 1 a). The draw back of Bug 0 algorithm is
that it is not robust for complex environment(map).

* In Bug 1 algorithm, where the robot do not stop
following the obstacle once direct path to goal is
found, rather it keeps following the obstacle, un-
til it complete the circumnavigation of the whole
object. Then it goes back to the point from where
the distance to goal is the lowest and start heading
towards the goal again (Figure 1 b). Comparing to
Bug 0 algorithm, Bug 1 algorithm is advantageous
because no matter whether we start left or right we
can reach the goal even for complex environment .

* The Bug 2 algorithm is another type of algorithm
where it do not circumnavigate the whole object
rather first it computes a straight line between the
initial robot position and goal position called m-
line. Then it starts moving towards the goal follow-
ing that line, once obstacle is detected, it follows
the wall of the obstacle until the m-line is found
again. Once found, it leaves the obstacle and fol-
low the m-line until the goal is reached (Figure 2

C).

3. Algorithm and Implementation

3.1. Heading towards the goal

The aim of this behavior is to approach the m-
line and follow it until reaching the goal. However, if
an obstacle is encountered on the path, the robot will
follow the obstacle which is another behavior until it
finds again the m-line. While following the head to-
wards goal behavior, the following 3 geometric condi-
tions should have to be satisfied.



—_

(98]

W

X_assume a left-

turning robot

. The turning direction might
be decided beforehand..

(a)

(b)

(©)

Figure 1: Illustration of Bug algorithms (a) Bug 0 (b)Bug 1 (c) Bug 2

* Distance to the goal: It is the Euclidian distance
between the center of the robot (rx, ry) and the goal

position (gx, gy).
dgoal = \/(gx - rx)z + (gy - rx)z

¢ Distance to the m-line: It is the shortest Euclidian
distance between a point (center of robot (rx, ry))
and the line connecting between the starting po-
sition to the goal position.To do so we define the
m-line as line equation as follows:

€))

ax+by+c=0
a=sy—gy )
b=gy—sy

C=Sy¥8y—Qu¥Sy
where (sy,s,) is the starting coordinate of the
robot.
lary 4 bry+ |
Va? +b?
e Delta: It is the angle between the x-axis of the
robot and the goal position, see figure (2).

3

dml ine =

delta = tan™" (_gy — ry) -6
8x — Ix
Where 0 is the angle between the horizontal and
the x-axis of the robot.The implementation for the
three geometry is described below

“

% Euclidean distance between the goal
and the robot position

Euclidean_dist = sqrt((goal-x — X)"2 + (goal.y
- Y)"2);

% Angular distance between the X—axis of the
robot and the robot—goal vector

position

Delta = wrapToPi(atan2(goal_y — Y, goal_x — X)
— Theta);
Delta_degrees = Delta=180/pi;

—_

~N OB WN

ry,u- 1

{F}

(a)

Figure 2: Geometric representation of the robot.

To control this behavior, the previous equations for
6 and the distance to the goal, will be used. If delta
is higher than a threshold angle (i.e. 20°), we apply
the maximum angular speed (60) and O linear speed in
the proper direction. Otherwise, we apply the angular
speed from maximum to O proportionally and constant
linear speed (300).

When the robot is sufficiently close to the goal
point, the distance to the goal will be relatively small (2
cm) and the robot stops considering that it has already
reached the point.

function [linear ,angular] =
goal_y)

global go

global X

global Y

global Theta

Head2Goal (goal_x ,

% Euclidean distance between the goal
and the robot position

position




oo

Euclidean_dist = sqrt((goal_-x — X)"2 + (goal_.y
- Y)"2);

% Angular distance between the X—axis of the
robot and the robot—goal vector

Delta = wrapToPi(atan2 (goal_y — Y, goal_x — X)
— Theta);

Delta_degrees = Delta=180/pi;

if Delta_degrees > 20
angular = 60;

linear = 0;

elseif Delta_degrees < —20
angular = —60;

linear = 0;

else

angular = 3 % Delta_degrees;
linear = 300;

end

if Euclidean_dist < 0.01
go = 0;

end

end

Finally the implemented code is tested with different
positions and their trajectory results is shown in figure
3.

3.2. Obstacle following

The robot can conduct an obstacle following be-
havior using the high-level controller, that is, when it
meets an obstacle, it circumnavigates the object. The
main purpose is to keep the robot moving around the ob-
stacle keeping almost a constant distance of 1 cm. The
obstacle following behavior is divided into two subse-
quent steps :

* Perpendicular rotation: In this state, if the robot
encounters an obstacle on its right side, then rotate
left until it becomes perpendicular to the obstacle
and vice-versa. By default, if the robot encounters
an obstacle in front of it then it would tend to go
left.

 circumnavigation: In this state, the robot would
likely circumnavigate the obstacle till it finds a m-
line which is nearer to the goal but not the previous
hit point.

3.2.1. Perpendicular rotation. Whenever the robot
encounters an obstacle in front of it, the rotational be-
havior mode gets activated. The goal of such rotation
is to align the robot parallel to the obstacle, which then
switch the robot to another state to circumnavigate the
obstacle.

For this operation, the direction of the obstacle appear-
ance has been checked. Two front right side sensors

()

Figure 3: Trajectory results of head towards goal (a)
goal (40,0) (b) goal (0,40) (c) goal(40,20)



(IR0 & IR1) have been used to measure the distance to
check whether there is an obstacle on the right side of
the robot. If it finds some obstacle it rotates till the (IR2)
senses 1cm distance form the obstacle.

And two of the front right side sensors (IR7 & IR6) have
been used to check whether there is an obstacle on the
right side of the robot. It will check the (IR5) sensor
measurement from the obstacle and continues rotating
till the distance remains lcm.

The following figures show the strategy for perpendic-
ular rotation.

-

Figure 4: Perpendicular rotation to right

-h
Go Left &{1

Figure 5: Perpendicular rotation to left

—>

Go Right

Go Left

Figure 6: Perpendicular rotation to straight

The MATLAB implementation is attached with the
report.

3.2.2. Circumnavigation. Once the robot is aligned
to the obstacle, the robot shifts to circumnavigation
state. First, the front sensor (IR1) is used to keep
constant distance between the obstacle and the robot.
If the sensor gives a reading less than a predefined
threshold, it indicates that the robot is too close to the
obstacle which will set the angular speed to 60° to
rotate the robot right. And if the robot is too far from
the obstacle then the angular speed to -60° to rotate the
robot left. Otherwise go straight with a linear speed
120 and angular speed 0°. This cases are also used for
rotating at the corner of the obstacle.

While the robot continues to circumnavigating the
obstacle, the distance of the robot to the m-line has
always been checked. If the distance is less than 2
cm, the robot shifts away from this obstacle following
behavior. Here, to avoid following the m-line from the
point of start, or extension of m-line another condition
has been used.

The hit-points have been used to check the distance
to goal when it re-encounters the m-line, and if it
is smaller than the distance to goal from the start
point of obstacle following (with some threshold), the
obstacle following phase terminates and the robot starts
propagating through m-line.



The way of navigating the robot at the corner is
shown in figure 7:

Rotate right
IRO,

Figure 7: Circumnavigating at the corner

When there is no m-line the robot circumnavigates the
whole obstacle. The trajectory is given in figure 8:

Figure 8: Circumnavigating the obstacle with out m-
line

3.3. The complete Bug 2

After implementing the Obstacle following and
Head towards goal behaviors, we have combined them
to complete the bug 2 algorithm. Always the robot starts
with the behavior Head towards goal and when it en-
counters an obstacle, the head towards goal behavior is
deactivated and the obstacle following behavior starts
and the robot follows the obstacle. The condition that
terminates the obstacle following and trigger the head
towards behavior is the distance to m-line. while the
robot is following the obstacle, if its distance between
the robot and the m-line is less than the threshold given,
the obstacle following behavior stops and the head to-
wards goal restarted. The results are shown in Figure 9

and 10 for different environments.

¥Y trajectory [m)

L
06

(d)

Figure 9: a)Environment with one obstacle b)trajectory
following one obstacles,



5] //
/
. /
s //f\
; /
(
)
o0 e
n/ a 02 03 0; 05
(b)
Figure 10: a)Environment with two obstacle

b)trajectory following two obstacles

4. Conclusions

Bug 2 algorithm is an efficient path planning al-
gorithm that lets the robot find the goal position in the
presence of obstacles in a systematic way. This algo-
rithm is better than the Bug O and Bug 1 algorithm. It
has lesser chance to get trapped and better chance to
reach the goal without losing much time by circumnav-
igating whole object.

In this lab work we implement Bug 2 algorithm.
The results show that the algorithm performs well under
the tested conditions. One drawback of the algorithm is
depending on the map it can perform less efficient, in
such scenario Bug 1 performs better than Bug 2.

References

[1] J. A. Oroko, and G.A Nyakoe, Obstacle Avoidance And
Path Planning Schemes for Autonomous Navigation of a
Mobile robots

[2] Buniyamin N., Wan Ngah W.A.J., Sariff N., Mohamad
Z. A Simple Local Path Planning Algorithm for Au-
tonomous Mobile Robots



